itmsoil

Safety and control in underground construction: The importance of instrumentation and monitoring **Richard Marshall** itmsoil

Why use instrumentation?

- Unnecessary expense?
- No-one ever looks at the data
- The equipment never works properly
- It gets in the way
- It gives too many false alarms
- It's never in the right place
- It doesn't give me confidence

Why use instrumentation?

- Can you afford not to have it?
- What if the data is well presented?
- What if the monitoring programme is well planned, efficiently installed and controlled by reliable people who gave you confidence?

Can you afford not to monitor?

- Underground construction in congested cities pushing the boundaries of technology
- Construction work is expected to be carried out safely
- Responsible people now being prosecuted for criminal negligence
- 3rd party asset owners will not accept damage to their properties
- Safety of members of the public and safe operation of adjacent transport systems is of paramount importance

Settlement Predictions due to Tunnelling

Effects of Settlement due to Tunnelling

Effects of Settlement due to Tunnelling

Cracking of a simple beam in bending and in shear

Effects of Settlement due to Tunnelling!

What if the data is well presented?

What if the monitoring programme is well planned, efficiently installed and controlled by reliable people who gave you confidence?

Project Route

Project Overview

- **118km** railway line through London
- 38 new stations
- 200M passenger journeys a year
- Cost: £16bn Europe's largest civil engineering project

CROSSRAIL

JUBILEE LINE EXTENSION

VICTORIA LINE

Project Route (Central)

London Geology

Superficial Geology

Made Ground - Typically 2m or 3m in thickness, it is formed by human activity. Alluvium - Typically 2-4m thick, locally up to 11 m. These are flood plain clays.

River Terrace Deposits - Typically between 2m and 4m in thickness. Layers of sand and gravel were formed during the previous ice ages by snow melting across a wide plain.

Solid Geology Sequence

London Clay - This 55-million-year-old stiff blue grey variably sandy clay is up to 80m thick that contains pyrites (Fools Gold) and charcoal fragments.

Lambeth Group - Typically 15m thick. These beds of sand and clay were deposited in a tropical environment with mangrove swamps covering west London changing to an estuary in east London.

Thanet Sand Formation - The thickness varies from 5m in west London to 15m in east London and Kent. This was formed in a shallow marine delta sand which is fine, soft and light grey.

Chalk Group - the oldest layers that are exposed in the London area. It is formed from the skeletons of millions of tiny sea creatures that built up over time and is about 70 million years old at the top.

Typical Station Layout

Contracts

Monitoring Database Requirements Argus 6

- One holistic project system
- Near real time monitoring capability
- Storage and retrieval of all sensor readings over lifetime of project
- Web-based system for ease of access
- GIS user interface
- Alarm and notification capabilities
- Data import/export and reporting capabilities

Monitoring Database Scope Argus 6

- Up to 20 sites across London
- Estimated final number of users = 500
- Number of sensors = 100,000 +

Argus 6 Data Flow Schematic

🚳 🖸 🖉 🚞 🖳 🖉 🚳

▲ ■ 14:28
■ 12/10/2011

Opening Index Map

Map view of a project

Map view of a project – zooming in

æ	
	Latest Data: Wed, 12 Oct 2011 12:22:22 GMT Page Load: Wed, 12 Oct 2011 13:25:43 GMT
-	Alarms
	Construction Progress
	Project Plans(50)
	 Sensors(2114)
	Filters
-	
1 V	
P) (4	
	☐ C701-LB27010-CR084
11111	
	► Log Book
-	Saved Views
TH	

Enhanced user searching facilities

in minutes: 😁 🔻	in seconds:	• •	Refresh	X	
				confirm al	
Name (short) ▲ ⊽	Time ▲ 🛡	Alarm level ▲ ⊽	Alarm value ▲ ♥	Status ∆ ⊽	Remark ∆ ⊽
CP FLR 1 PVS 1 -	2011-10-10 11:16:00 - 2011-10-11 09:32:00	High 3 1: 3.00 2: 500	96.695	unconfirmed	
Battery 1 6 Denmark Pl	2011-10-03 17:59:00 - 2011-10-08 00:59:00	Low 1 12.5	12.48	unconfirmed	

Alarms triggered when a sensor passes a threshold

Project Instrumentation Statistics

•	Automatic Total Stations (ATS)	>300
•	Prisms	>20 000
•	Electrolevels	>3 800m
•	Precise Levelling Points	>3 700
•	BRE Building Settlement Points	>2 000
•	Bassett Convergence Arrays	>64

Construction Information Management System

Bond Street Overview

Bond Street Automated Total Station (ATS)

A total station is an electronic/optical instrument used in modern surveying.

The instrument is controlled via software running either on a data logger or a computer.

Bond Street Above Ground

Bond Street – Above Ground General Design

Bond Street – Aboveground Automated Total Station (ATS)

Bond Street – Underground Automated Total Station (ATS)

Ideally the RTS is located outside of the zone of influence of any movements. This can usually be achieved on small projects, but often the instrument has to be sited in an area which it is known will move.

In this instance the position of the RTS must be determined before each cycle of measurements.

The simplest correction is to use 3 (or more) reference points outside the zone, this is called resection.

Bond Street – Aboveground Manual Survey

Underground General Design

Cut/Cover tunnel

Same

GATTER OF

LU running tunnel

Legend

- 3D Geodetic Prism (Transects @ 10m c/c)
- Sockets BRE Type Structure (Transects @ 10m o/c)
- [ZZZ] Track shoe monitoring at 2m centres
- + Electrolevel Beam
- Retro reflective target

GREEN PARK STEP FREE ACCESS - SHAFT / TUNNEL CONSTRUCTION PROGRESS

♦ ► ♦ ♦ ∑i E ■ Ø X

itmsoil

Tiller

Underground Bassett Convergence System

The Bassett Convergence System (BCS) is designed to monitor δx and δz displacements of structures and tunnels in near real-time.

From these displacements we can calculate squat and convergence of the tunnel.

Underground Bassett Convergence System

Underground

Basset Convergence System

Track Monitoring

Track Monitoring

Crossrail Track Monitoring

Wireless Track Tiltmeter

Ground Instrumentation

Key Areas for Instrumentation

b)

c)

- Prediction must identify two features:
 - a) Where are the critical zones?
 - b) What are the magnitudes of deformation and stress changes?
- II Are the changes in the critical zones:
 - a) Acceptable monitored for record & learning purposes
 - Some concern monitored adopting the "Observational Method"
 - Unacceptable and requires planned intervention monitored to ensure the intervention is working

Ground Instrumentation

Location of Instrumentation

• Inclinometers

Extensometers

Piezometers

Geotechnica

Ground Instrumentation - Inclinometers

Ground Instrumentation – In-place Inclinometers

System Overview

08

Mains

Ground Instrumentation – Extensometers

Ground Instrumentation – Piezometers

COLOGNE COLLAPSE: GROUNDWATER DRAWDOWN

Ground Instrumentation – Tunnel Monitoring

Conclusion

- 1) Is instrumentation an unnecessary expense?
- 2) Does it get in the way of the programme and cause delays?
- 3) Does it gives too many false alarms?
- 4) Is it always in the wrong place?
- 5) Does no-one ever look at the data?

Questions?

